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Introduction 
 
A fierce war rages over control of your child’s mathematics education. It is a cruel war, fought mostly on 
the sly, in which the only casualties are children. The war is between those who want your child to 
understand mathematics and those who just want her to learn it. (For convenience, I’m going to call “your 
child” Dana from now on). The stakes for Dana are enormous. Leaving aside personal benefits, which are 
substantial, a good math education is a vital key to entry to a good, or even not so good, university. Once 
there, it is a key to entry into the school of her choice within that university. And a good education is the 
key to a comfortable and productive life. Income distribution now is based largely on the level and quality 
of education, with highly educated people moving swiftly into well paying jobs and becoming part of the 
“cognitive elite.” Others toil for a pittance and suffer the bumps and jolts that come with life in the slow 
lane. 
 
Why is proficiency in mathematics required for college work? Certainly it is required if Dana wants to be 
an engineer or physicist or mathematician, but why is it required for a career in literature or philosophy or 
poetry? The answer is that proficiency in math is used as a filter to reduce the number of qualified 
applicants to many schools. State universities, for example, are required to accept all qualified resident 
applicants. In today's climate, where the importance of a college degree is clear to all, applications flood 
those universities. The response is to shrink the pool of qualified applicants by raising the entrance 
requirements. Math proficiency makes a great barrier, especially in view of the terrible job in math 
education being done in so many high schools and grade schools. And what if Dana has great mechanical 
aptitude and would make a fine engineer if she chose to become one, except for a distaste for math acquired 
in grade school? She can probably grit her teeth and make it into the university system, but she is likely to 
end up with a degree in history and a job in human resources, not engineering or science. In brief, she will 
find it harder to approach her potential in life without a good background in math. 
 
The message of this booklet is that a young child cannot understand math, not even arithmetic, because her 
brain is not yet wired for the task.  She can learn to perform arithmetic, all of it, but she can’t understand it.  
Virtually no one in her age group can, not anywhere in the world. But there are those who believe she can 
understand arithmetic, that she can explore the subject and discover the underlying principles, and that she 
can come to understand it through that process. That is the reason for the war, and that is the reason Dana 
can be harmed by a system that commands her to do something she cannot do. 
 
What is it about grade school arithmetic that is impossible for children to understand? Our base 10, Arabic 
numeral system of working with numbers certainly seems simple enough. It's not rocket science, after all.  
Or is it? We will see that the system is a very sophisticated method of handling numbers.  It is the end 
product of thousands of years of thought by some very, very smart people. We also will see that a child’s 
brain is psychologically immature. It is not wired to duplicate (rediscover) the work of mature scholars 
from the past.  Someday, Dana may stand on the shoulders of those scholars and make contributions of her 
own, but first she must sit at their feet and become expert in performing their method. When all is said and 
done, it is impossible to measure a schoolchild's understanding of mathematics. But it is quite possible to 
measure performance, and that is exactly what college entrance boards do. 
 
Before we visit the battlefields of this war for control of Dana’s mathematical education, let’s take a look at 
the complexity of the subject matter and the mental equipment she brings to the classroom.  -  -   
 
 
 
 
 
 



Levels of mathematical sophistication –– pre-modern 
 
A. Hunter-Gatherers 

There are a few hunter-gatherer societies still in existence, and we may assume that their level of 
mathematical development has remained unchanged throughout the millennia. Many of these cultures have 
no words for numbers higher than “two” or “three.” In these societies, numbers sometimes are attached to 
specific objects. Thus, there may be no generic term for, much less abstract concept of, the number “two.” 
The “two” used to quantify one type of animal may differ from the “two” used to quantify another. There is 
a faint echo of this in modern English when we refer to a brace of pheasants or a pair of twins.  The people 
are primitive (by our standards), but their brain structures are not. For example, there are no primitive 
languages. The languages of the most primitive societies are as grammatically complex and rhetorically 
supple as those of the most modern societies. It is not that primitive people lack the brain- power to 
comprehend more sophisticated mathematical structures, but rather that they lack the need for a higher 
concept of mathematics. In other words, they don’t have much to count.  Australian Aborigine children 
who are exposed to “modern” educational structures perform as well, on average, as their nonnative 
counterparts. 

B.  Herding Societies 

Herdsmen have numbers high enough to count the animals in their herds. There is no concept of numbers 
as abstract entities or of formal arithmetic operations. If four animals are to be sold to one buyer and a price 
per animal is agreed upon, each animal must be sold in a separate transaction to avoid confusion and 
mistrust. As with the hunter-gatherers, they have developed mathematical structures sufficient to meet their 
needs, and no more. 

C.  Ancient Civilizations 

These societies had words and symbols sufficient to generate very large numbers, and, though they needed 
mechanical aids to perform calculations, they could do the arithmetic for any activity from state 
bookkeeping to huge construction projects to planning grain production for whole populations. The Roman 
Empire was one such civilization, and its method of using Roman numerals to record numbers, together 
with counting boards to perform the arithmetic, is the one that eventually was replaced by Arabic numerals 
and algorithms. 

The Roman method, which did not use place value, expressed each number as the addition or subtraction of 
certain symbols, as with MM DC LXXX VIII, which we express as 2,688.  It is called an additive system 
of notation as opposed to our positional system of notation. Like symbols were added to obtain a subtotal, 
and the subtotals were added to produce a total. I, X, C, and M were symbols for ascending powers of 10, 
with values of 1, 10, 100, and 1000, respectively, while V, L, and D were symbols for the intermediate 
values 5, 50, and 500. Larger numbers were formed by adding bars to the tops of letters. A single bar over 
“V,” for example, indicated a multiple of 1,000, for a final value of 5,000. 

Additive systems, by their nature, do not accommodate paper and pencil work, and so counting boards and 
counters were required to perform arithmetic. An addition problem was expressed in Roman numerals, the 
operation was done on a counting board, and the result was written in Roman numerals. The counting board 
was a very simple adding machine that functioned as a conversion device between additive Roman 
numerals and positional place value, with numerals replaced by counters and the value of the counters 
determined by their place (the column they occupied) on the board. 

 
 
 
 
 
 



The figure below illustrates the process of the Roman Counting Board. It is not a true reproduction. 
 

 
 
The counters actually produced two values, additive and positional. Three individual counters within a 
place on the counting board were added to produce an additive value of 3. The particular place those three 
counters occupied determined whether they would be multiplied by 1, 10, 100, 1,000, or a higher power of 
ten. Thus, the three counters could have a positional value of 3, 30, 300, or 3,000, in the same way that the 
value of our “3” is determined by its place within a number. The difference is that our “3” is a symbol in 
which the addition (1+1+1) already has been done. It is a critical difference, as we shall see. 
 
Although the use of Roman numerals and the counting board was a workable method of performing 
arithmetic and recording numbers, it still was primitive by comparison to our place value method of 
manipulating numbers instead of objects. Our modern system can deal with any number, no matter how 
large, using only ten symbols (0 - 9), but the Roman system, where ten “I”s made one “X,” ten “X”s made 
one “C,” and ten “C”s made one “M,” required an infinity of symbols to handle an infinity of numbers. 
 
That said, the Roman numeral – counting board system did indeed work. It met the needs of the Roman 
Empire, and no more. Almost anyone could learn to use it, and there was an added benefit in that it was 
difficult to alter Roman numerals on commercial documents.  (It is comparatively easy to alter “333” by 
changing a “3” to an “8,” by adding a “0” at the end, or by adding a “9” at the beginning; that's why we 
express numbers on bank checks in both Arabic numerals and words). The system functioned well enough 
to remain in place until the greatly expanded commercial activities of the Industrial Revolution required a 
faster and more efficient method of dealing with numbers. 
 

D.  Babylonian base 60 

Mesopotamia, one of the great centers of civilization of the ancient world, developed a unique base 60 
numbering system using place value. (Base 60 means dealing with groups of 60 instead of groups of 10). A 
remnant of that system divides our modern days into seconds, minutes, and hours, with 60 seconds in a 
minute and 60 minutes, or 3600 (60 x 60) seconds, in an hour.  For example, 11:22:33 A.M. means 11 
hours, 22 minutes, and 33 seconds after midnight, a simplified expression of (11 x 3600) + (22 x 60) + (33 
x 1) seconds after midnight (the total is 40,953, illustrated below). We know from archeological evidence 
that the system was employed in the days of King Hammurabi of Babylonia (c. 1700 BC), and the 
sophistication of the mathematical calculations indicates it was in use long before then. Base 60 used only 
two numerals (as opposed to our ten Arabic numerals or the Roman infinity of numerals), a vertical wedge 
shape that designated “1” and a horizontal wedge shape that designated “10.” When combined, those 
symbols had both additive and positional values. Two horizontal wedges and two vertical wedges 
(10+10+1+1), for instance, had an additive value of 22. The positional value of 22 was determined by its 
place within a number.  The figure below shows how the Babylonians would have recorded 11:22:33 
(A.M.). 

 
 
 
 
 
 



Babylonian place value notation with cuneiform numerals - these are not counters!   
 

 
 
Base 60 had several advantages over base 10.  Very large numbers could be generated and handled quite 
easily.  The repetitive nature of the numbering system eliminated the need to assign differing symbols for 
the ascending powers of 60 (as opposed to the Roman method of using letters of the alphabet for the 
ascending powers of 10). Fractions were easier to handle because 60 has more factors than 10 (1, 2, 3, 4, 5, 
6, 10, 15, 20, 30, and 60 all divide evenly into it). Perhaps the most important advantage was that base 60 
dovetailed nicely with their 360-day calendar and 360 degree circle. The scientific communities of Greece, 
Rome, and eventually all Medieval Europe, used base 60 as a sophisticated alternative to the more common 
Roman (or Greek) numerals until it, too, was replaced by Arabic numerals and algorithms. 
 
The Babylonian base 60 numbering system was the first recorded example of written place value and held 
splendid promise, but there were drawbacks. First, there was no zero.  An empty place was held by an 
empty space.  In the example “11 22 33,” given above, if the middle place were empty (11 0 33), the 
number would be recorded “11 33.”  Carelessness with spacing caused uncertainty about the value of the 
number.  Second, it required additive notation within each place, so that “59” would be written as 5 
horizontal wedges and 9 vertical wedges, a clumsy system. (If Arabic numerals were restricted to two 
symbols, “5” and “1,” we would write “873” as “5111 511 111”). Therefore, evolution into a place value 
system similar to our own would have required 60 individual numerals (including zero), a disabling 
obstacle. 
 
Babylonian astronomers and scholars who worked with base 60 were, to say the very least, extraordinary 
mathematicians who handled very complex problems with very simple tools. Counting boards, which were 
useful for base 10 arithmetic but not base 60, were not in play. Beyond that, high-end Babylonian math was 
far, far more complicated than simple arithmetic (although it's likely Babylonian merchants handled simple 
arithmetic in much the same way as the Romans). What the mathematicians did was solve complex 
problems once, then record the event on a clay tablet. Over time, the tablets evolved into formal tables that 
were stored in libraries and used by future generations to solve other, more complex problems. No one is 
sure how the original problems were solved. 
 
Why were Babylonians forced to rely on large libraries of mathematical tables (inscribed on clay tablets) 
instead of working individual problems out using the equivalent of paper and pencil? One reason is that 
was no papyrus, much less paper. Clay was the available medium. Papyrus had been invented in Egypt, but 
didn’t appear in Mesopotamia until much later. A more fundamental reason is that manipulating numbers 
on paper is not possible unless one already has memorized the requisite addition, subtraction, 
multiplication, and division facts. Excluding the zero, there are 9 working numbers in base 10. That means 
there are a total of 81 (9 x 9) addition facts, and 81 subtraction facts. Had base 60 been equipped with a full 
array of numerals (instead of only two), it would have been necessary to memorize 3,481 (59 x 59) addition 
facts, and an equal number of subtraction, multiplication, and division facts, for a grand total of 13,924 
facts, an extremely daunting task, even for those mathematical heroes. 
 
In any event, base 60 met many needs, and so it lived on and spread to the learned classes in Greece, then 
Rome, then, eventually, all of Europe. It also spread to the Indian subcontinent, and there it became 
involved in one of the most momentous events in the history of mankind.   -   
 
 



The development of our modern numbering system 
 
A.  India and the birth of “Arabic” numerals 

Like Greece and Rome, India retained the use of base 10 (with letters of the alphabet representing the 
ascending powers of 10) for trading purposes and for basic arithmetic. Both systems required the use of a 
counting board.  Around 500 AD, a truly intelligent person got to thinking about how base 60 numeration 
worked so well using a limited number of numerals (two only, the vertical and horizontal wedges), and how 
convenient it was to have the value of these numerals determined by their position in a number, as the value 
of counters was determined by their position on a board. He must have pondered how nice it would be to 
have that same simplicity of repeating numerals in base 10. 

Whatever his thought processes, this unique individual combined the principles of the counting board and 
base 60, and developed a system of repeating numerals for base 10. There were 9 numerals involved (1 - 9, 
zero had been developed by the Persians during their tenure in Mesopotamia around 300 BC, but the 
concept had not spread). Astoundingly, he devised a set of numerals in which the additive nature of the 
existing system was bypassed because the numerals were symbols for addition that had already been done! 
This insight occurred only once in the history of mankind, and so it seems a shame that the singular 
accomplishment of this unknown Indian genius has been given the misleading popular name Arabic 
numerals (the formal name is Hindu Arabic numerals, which seems small compensation). Roughly two 
hundred years later, Hindus incorporated zero into the system and almost all the components of our modern 
base 10, positional notation system of numbers were in place. 

B.  Islam constructs a cultural highway from India to Europe 

In 711 AD, the recently established and rapidly expanding Islamic Empire launched successful military 
campaigns against both Europe and India, thereby connecting Europe to all the intellectual riches from 
Alexandrian Egypt to the Indus Plain. The cultural flow was one way, since what had been the Western 
Roman Empire was by then ruled by the children of barbarians. Islamic scholars acquired the Hindu base 
10-place value system and, in ninth century Baghdad, a Persian mathematician named al-Khowarazmi 
published a book in Arabic about the new numbers and the rules (algorithms) for dealing with them.  
(Algorithm is a corruption of his name; the rules he passed along remain unchanged to this day). 

Hindu Arabic numerals were not on the fast track. Al-Khowarazmi wrote his book in the ninth century, but 
the news didn’t reach Moslem Spain until the eleventh century. Christian scholars learned the “new” 
method from the Moslems and brought it to the rest of Europe, where it languished for hundreds of years. 
Throughout the remainder of the Middle Ages, the Renaissance, the Reconquista of Spain, the conquest and 
colonization of the New World, the Reformation and the Counter-Reformation and the countless wars, 
most Europeans, excluding the great Italian banking families, clung to their tried-and-true Roman numerals 
and counting boards. Why was this so? One reason is that Arabic numerals, which initially require more 
discipline and work (to learn the arithmetic facts and the algorithms), exceeded the needs of the Europeans. 
Roman numerals met their needs exactly, no more, no less. When Roman numerals and counting boards 
failed to meet the needs of the Industrial Revolution, Arabic numerals and algorithms were embraced, at 
last. 

Scholars and scientists also refused to adopt Arabic numerals. They were content with the ancient 
Babylonian base 60-method, and for another very good reason. Base 60 could deal with decimal fractions; 
Arabic numerals couldn’t (yet). Moving from right to left in base 60, the number in the first (units) place is 
multiplied by 1, the number in the second place is multiplied by 60, the number in the third place is 
multiplied by 3,600, and so on. But three thousand years earlier the Mesopotamians had figured out that 
numbers also could move to the right of the units place. Thus, the first number to the right was multiplied 
by 1/60, the second number was multiplied by 1/3600, and so on. The powers of 60 could be negative as 
well as positive.  

 
 



This is how they would have expressed the powers of 60, had they the use of Arabic numerals and 
exponents.  Powers of 60 could be negative. 
 

602 601 600 60-1 60-2 
3600 60 1 1/60 1/3600 

 

 It wasn’t until the fifteenth century that a Moslem scholar perceived that “10” also could have negative 
powers. 

Powers of 10 can also be negative. 
 

102 101 100 10-1 10-2 
100 10 1 1/10 1/100 

 
Again, the new knowledge spread to Europe, and in the seventeenth century the Europeans made one of 
their few contributions to the Hindu Arabic base 10 place value system, and a splendid one it was: the 
decimal point. Arabic numerals were ready and waiting for the Industrial Revolution, which arrived one 
hundred and fifty years later.  
-  
-  
The six elements of our modern numbering system 
 

1.  Arabic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 

All of the numbering systems used before the arrival of Arabic numerals were additive.  For example, the 
Romans had a word for “8,” octo, but they needed 4 symbols to write it, “VIII.’ It was necessary to add the 
values of those symbols to arrive at the intended quantity, 8. In contrast, the quantity represented by the 
Arabic numeral “8” needs but a single symbol to represent it because the addition already has been done. 

2.  Ten, the fundamental number, is invisible. 

Ten is the fundamental number of our base 10, place value system, but we never see it because, unlike the 
Romans, we have no symbol for it; we never see the fundamental number of any place value system.  In 
base 10, if we start from zero and add single units (0+1=1, 1+1=2, 2+1=3...), we will soon arrive at the 
fundamental number, ten.  Just as with an old-fashioned adding machine, the ten is represented by a “1” 
which has been moved to another place (the adjoining column to the left), where it now represents 1 group 
of ten “1”s, and a zero, which occupies the first column. 

 If, for some reason, we were to convert our place value system from base 10 to base 8, an interesting 
thing would happen. We would still have a word for 8, eight, but we no longer would have use of the 
numeral.  Starting from zero and adding single units, as above, we would arrive at the new 
fundamental number, eight, at which point we would write a “1,” which now would mean 1 group of 
eight 1’s, in another place and append a zero to the right as place holder.  If Dana had eight dollars, 
we would say, “Dana has eight dollars,” but write, “Dana has 10 dollars.”  Strictly speaking, the 
written term "”base 10” can refer to any base whatsoever. “There are 10 types of people: those who 
understand binary and those who don’t” is a written witticism that affords merriment to those who 
understand that “10” here expresses the base 2 value of “two.” 

 
Continuing on in base 10, if we keep adding single units we soon will accumulate 2 groups of ten units, 
then 3, 4, and so on until we have 10 groups of 10 units.  We can't keep a ten in any column (because ten, 
as our fundamental number, has no symbol), so the new ten is rolled over into the next (third) column and 
represented by a “1,” which now means 1 group of 10 x 10 units. Another way to write 10 x 10 is 102, 
where the “2” is called an exponent (an exponent indicates how many times a number is multiplied by 
itself).  We write it as “102,” but we say “10 squared” or “10 to the power of 2.”  



  
3.  Place value 

The place in place value refers to the position of the various Arabic numerals (0 - 9) in any number. Place 
determines the final value of each number by attaching a hidden multiplier (the fundamental ten raised to 
some power) to that number. To the left of the decimal point, the number in the first place is multiplied by 
1, the number in the second place is multiplied by 10, the number in the third place is multiplied by 100, 
etc. Moving to the right of the decimal point, the number in the first place is multiplied by 1/10, the number 
in the second place is multiplied by 1/100, the number in the third place is multiplied by 1/1000, etc. The 
figures below illustrate the meaning of 345.34. 

The meaning of 345.34. 
 
 102=100 101=10 100=1 10-1=1/10 10-2=1/100 
 x  3 x  4 x  5 x  3 x  4 
345.34  = 300 + 40 + 5 + 3/10 + 4/100 

 
4.  Shorthand notation 
 
“345” is shorthand for 300 + 40 + 5, which is shorthand for (3 x 100) + (4 x 10) + (5 x 1), which is 
shorthand for (3 x 10 x 10) + (4 x 10) + (5 x 10/10).  That is a lot of shorthand.  The genius of Arabic 
numerals is that we can manipulate them, using the standard algorithms, without giving thought to the 
shorthand involved. 
 

    This amazing simplicity of operations is why children can learn to do arithmetic without 
understanding it. And the same simplicity is what misleads so many educators. They 
expect your child to be capable of understanding something that appears to be so simple. 
But arithmetic is not simple at all, and understanding it is not easy. It is beyond the reach of 
small children. 

 

5.  Zero 

The Roman system, where 202 was expressed as CCII, did not require a zero.  Our place value system 
does.  Zero has two functions:  as a placeholder (in 202, for example, where we could as easily write 2 - 2, 
or 2   2), and as a working number (5 + 0 = 5).  In effect, zero has replaced ten. 

6.  Algorithms 

Every numbering system needs an operating system. The Romans used their counting boards; we use 
algorithms, which are step-by-step procedures for solving certain categories of mathematics problems. 
Taken together, they form the operating system for Arabic numerals.  Each type of arithmetic problem has 
its own algorithm.  For example, here is the algorithm for addition of whole numbers, without carry-over. 

Adding 123 and 456   

 

 

 



The addition algorithm seems such a simple and straightforward way to combine two quantities that there is 
a temptation to view it as easily discoverable.  It is important, however, to realize that this algorithm is the 
end product of over 5,000 years of human thought.  The first agricultural settlements appeared in 
Mesopotamia between 5,000 and 6,000 BC. The Sumerians, who established the basic features of 
Mesopotamian civilization, arrived about 3,500 BC. Four thousand years passed before the unsung Hindu 
genius invented “Arabic” numerals, and it took another 1,200 years or so before the numerals and operating 
system were refined to their present form.  In all the years since the algorithm was published by al-
Khowarizmi , no better method of dealing with “123 + 456” has been devised. 

As mentioned above, learning Arabic numerals and how to operate them requires discipline and work. The 
discipline must be imposed and the work must be directed. In other words, it must be taught. We will 
review the history of how this was done and why it is being done the way it is today, but first let’s take a 
look at the tools Dana will bring to the educational process. 

Psychological development of children 

A.  Infancy 

Dana was born into a personal paradise. Call it her Garden of Eden, if you wish. There were three huge 
differences between her world and ours. First, since her brain could not as yet comprehend the relationship 
between (apparent) size and distance, she perceived solid objects as being elastic.  Her mother’s face would 
grow large, then small, then large again, as if by magic. Second, being physically helpless, Dana did not 
work. Everything was brought to her; everything was done for her. If things weren't exactly to her liking, 
she used her inborn instincts to promote change. An involuntary smile or cry made her mother’s face grow 
large. Warmth and comfort and nourishment followed.  She maintained eye contact with her mother while 
nursing, which prolonged the encounter and secured a full meal, and she did those things without volition. 
Third, she was literally a learning machine and learned without effort. Among her most important powers 
was an inborn ability to acquire language without formal instruction of any kind. Born with a portion of her 
brain already hardwired for the task, which area was fully engaged even as her family prattled 
“meaningless” words to her. 

Her horizon expanded as she learned to crawl, then walk. She relentlessly investigated every single aspect 
of her kingdom and continued to learn at a prodigious rate, effortlessly. By age four, she had acquired at 
least one complete language, and her language skills could outperform the world’s largest computer. She 
even displayed a glimmering of formal logic when she ran into the house screaming, “Johnny hurted me!” 
because she was applying previous examples of past tense verb formation to current events. And she was 
absolutely superb at absorbing facts, although she couldn’t form a logical connection between chasing a 
ball into the street and the very grave danger of being hit by a passing car. The power of formal reasoning 
lay years in the future. 

B.  Pre-operational stage of development 

Dana’s magical kingdom began to dissolve as her brain adjusted for the puzzling changes in the size and 
shape of things.  But newer concepts, such as “how much” and “how many,” were quite hazy. She would 
choose orange juice in a tall, narrow glass over an equal volume of orange juice in a short, wide glass 
because there appeared to be more juice in the tall glass, and she would stay with her choice even when the 
juice was poured back and forth from one glass to the other as proof that the volume of juice was the same 
in either glass.  She would choose a widely spaced group of 5 jelly beans over a tightly spaced group of 5 
jelly beans for the same reason, in spite of having solemnly counted out “5” in each group. 

Counting out loud (“one, two, three...”) was not much more than a vocabulary building exercise. Although 
her parents were thrilled that she was "learning her numbers,” it had nothing to do with learning math. As 
her fine motor skills improved and she learned to write symbols for those words (1, 2, 3...), it still had 
nothing to do with learning math. A loosely spaced “5” was considered to be greater than a tightly spaced 
“5.” Dana was at the “pre-operational” level of development where numbers existed but had no real 
meaning. 



And then one day something happened. Dana could no longer be fooled by the jellybean trick. She had 
achieved conservation of number, whereby the space occupied by the jellybeans no longer distorted the 
quantity. It was not something she was taught; it can’t be taught. It was a direct consequence of the ongoing 
development of her brain into a complex, bilateral structure. Dana was slowly moving from her own 
magical kingdom into the world of reason. 

Unfortunately for Dana, there is a tradeoff attached to the growing sophistication of her brain. As her power 
to reason increases, her ability to learn without effort decreases. Everything previously done so effortlessly 
was done because of her instinctive tendency to do those things. She does not, however, have an instinctive 
tendency to learn the addition and subtraction facts. That will require work, a concept with which Dana will 
become familiar. Hopefully, she will learn that work can be rewarding because tears and smiles, while still 
somewhat effective with Mom and Dad, are proving much less effective with siblings and playmates and 
teachers. 

C.  Concrete operational stage of development – attaching numbers to objects 

Dana has entered what many psychologists call the concrete operational stage of development. Space and 
motion no longer distort quantity. She conserves number, and so is ready to deal with concrete 
manipulatives, such as counters or beans, and learn a little math. At this level, number is regarded as an 
attribute of objects, much as color or size or shape or texture. This level of understanding can be built upon 
and carry her through grade school arithmetic and beyond. The ancient world operated at this level. Armies 
were paid, grain production for entire empires was analyzed, the Egyptian pyramids, and the Hanging 
Gardens of Babylon were constructed. But there is a higher level of understanding numbers, a level that 
views numbers as independent, abstract entities. This level will be beyond Dana until she reaches the final 
stage of psychological development. 

D.  Formal operational stage of development – power to reason with formal logic 

There was a dramatic change in Dana's mental apparatus when she attained conservation of number and 
entered the concrete operational stage of development. She won't experience another such change until she 
is somewhere between 11 and 15 years old, at which time she will enter the final stage of psychological 
development, called formal operational by some psychologists, and become equipped to deal with formal 
logic and abstract concepts. Just as there was no way to hurry the change from pre-operational to concrete 
operational, there is no way to hurry the change to formal operational.  Her brain will complete its bilateral 
hardwiring at its own pace. Dana’s brain can be nourished and exercised, but it can’t be hurried. This is not 
to say that one day Dana won’t be able to employ formal reasoning and the next day she will. Rather, it 
means that there will come a time when she is ready for an introduction to ideas employing formal logic, 
but that time is not now. 

This final stage of psychological development is marked by the potential to view numbers in an entirely 
different way.  If this potential is reached, Dana someday will view numbers, not as attributes of concrete 
objects, but as independent and abstract entities with infinities of forms. It is at this level that the difference 
between numbers and numerals becomes clear.  When five, for example, is considered in the abstract; it can 
be represented by many different forms, an infinity of forms, in fact, much as the abstract concept of beauty 
can have an infinity of forms. Five can be represented symbolically as 5, 8-3, y+2, the square root of 25, 
the 3rd prime number, and so on. Numbers at this level can be viewed as anti-words because numbers have 
only one meaning, but many forms, whereas words have many meanings, but only one form. (Logicians 
have developed a synthesis called Symbolic Logic, where the "symbols" have one form only and one 
meaning only, but that way lies madness).  Please keep these thoughts in mind when we review the history 
of New Math and the ruinous effects of introducing abstract concepts to first and second graders. 

Now that we know something of the hidden complexity and sophistication of grade school arithmetic and 
the developmental stage of Dana’s brain, it is time to visit the war between those who want Dana to 
understand math and those who just want her to learn it.  -  -   

 



A brief history of European and American mathematics instruction 

A.  From the Middle Ages to Sputnik 

In Medieval Europe, warfare was the business of the rulers and the burden of the ruled. Many male children 
judged unsuitable for war duty were encouraged to join the Church, and there they became the clerics who 
kept the books for the various kingdoms, bishoprics, and fiefdoms. They performed their calculations on 
counting boards and wrote the answers in Roman numerals. The Industrial Revolution changed that system. 
Since there were not enough clerics to staff the proliferating counting rooms of Europe, training for 
mathematics was separated from training for the religious life. Arabic numerals were taught, and the 
products of this teaching were called clerks (a modification of cleric). 

The new students tended to be more unruly than their predecessors, and so mind numbing, unending 
calculations formed the backbone of the curriculum, both as a teaching method and as a disciplinary 
device.  No effort was made to encourage understanding of the material. This system of training students in 
mathematics was transferred to the New World and remained intact through World War II. But many 
educators were unhappy with the system and sought a better teaching method, a way to encourage 
understanding of the material, thereby eliminating the need for the constant, boring drills that turned so 
many students away from math. Though money was scarce, several universities experimented with new 
teaching methods. These new methods were similar and later were given the collective name of New Math. 
Experimentation was measured, results were analyzed, and progress, though slow, was steady. 

B.   From New Math to Newer Math 

The successful flight of Russia's Sputnik in 1957 changed things forever. The federal government, already 
worried about potential shortages of qualified engineers and scientists to staff our increasingly technical 
industrial base, became terrified that we were falling behind the Russians. Purse strings were opened, and 
harmful effects of the new money soon appeared.  The measured pace of research was replaced by a frantic 
scramble for market share in textbooks and teaching programs. It quickly became a gold rush in which 
everybody had a license to “improve” the teaching of mathematics. Set theory became the grand vehicle 
that would lead to understanding. Never mind that set theory, until then, had been the domain of 
professional mathematicians and graduate students. Children who lacked the ability to deal with abstract 
concepts because of the immaturity of their brain structures were informed of the difference between 
numbers and numerals, that “5,” when written, was a numeral, a symbolic representation of the set of all 
mathematical operations from which an abstract, unwritten number “5” could be derived. 

The properties of numbers (not numerals) were introduced:  associative [(5+6)+7 = 5+(6+7)], commutative 
(5+6 = 6+5), and distributive [5x(6+7) = 5x6 + 5x7]. These were the tools that would lead to discovery, 
then understanding.  Children were reminded that as soon as they recorded a certain number in writing, 
they were using a numeral to do so. There is more.  The children were expected, to a great extent, to 
explore these concepts on their own! 

Those of you reading the handsome, cyber-bound edition of this booklet on the web may be interested to 
know of another consequence of Sputnik. A federal bureaucracy called ARPA (Advanced Research 
Projects Agency) was established to oversee the research activities of increasingly worried military services 
and increasingly busy defense contractors. Around 1970, a system was devised that would allow various 
components of ARPA to transfer data via computers in the event of nuclear war. ARPAnet was born.  From 
a union of ARPA and the National Science Foundation came NSFnet. From NSFnet came the Internet, 
which, as time went by, developed an internal organ called the World Wide Web. And so the beneficial 
apparatus derived from one consequence of Sputnik enables us to communicate about the harmful effects of 
another. 
 
 
 
 
 



New Math was a catastrophe. Teachers were untrained (and untrainable), parents were ignored, school 
officials were assailed, but only the children were harmed.  So great was the damage from New Math that a 
counterrevolution, called Back to Basics, was formed. Back to Basics was gaining momentum when the 
well funded and well connected (remember the chase for market share) New Math camp counterattacked by 
calling up painful images of the way math was taught in the bad old days. This is the Space Age, they 
argued, we must do more than teach future farmers how to plan for next year’s crop. New Math had its 
shortcomings, they admitted, but they had reformed the method. In fact, they called it Reform Math. 
Reform was an exquisitely clever choice of words because reform, after all, was what the Back to Basics 
people wanted. Many parents mistakenly believed that Reform Math and Back to Basics were the same. 
 
Parents were pushed out of the loop from the first days of New Math. In earlier days, a child who needed 
help with math stood a good chance of finding it at home, from a parent or an older sibling. But in a system 
that even competent and dedicated teachers couldn’t comprehend, parents, including those who enjoyed 
math and were good at it, were helpless because the textbooks seemed to make no sense at all. Parents tilted 
at windmills as teachers floundered, school district officials shook hands with the textbook dealers, and the 
various state governors politely yawned and stood above it all.  New teaching programs still are introduced 
with great fanfare, but the programs do not work. Pattern recognition is now the rage. It is declared that 
pattern recognition will lead to mathpower. Underlying everything is exploration and group work, 
calculators and games. Many school administrators now pin their hopes on computers, although there 
probably is not one truly effective math teaching software program available. Talk about a race for market 
share.  (The Math Path computer program teaches facts, not mathematics. The Math Path system teaches 
mathematics). 
 

In effect, students are expected to teach themselves. Any way to arrive at a particular answer, any way at 
all, is fine, for it demonstrates that the student has gained an insight into the underlying process.  Beyond 
that, the worst of the schools don't demand a correct answer. The effort expended, and the improved self 
image from the praise that effort elicits from the teacher, are quite sufficient. Mathpower is sure to follow. 
Sadly, many teachers never even pose specific arithmetic problems.  Instead, they assign groups to discover 
for themselves, for example, how a small, urban business can turn a profit (so much for the Space Age; at 
least we've moved off the farm). Group work, of course, provides the perfect cover for shy or lazy children. 
 

There are those who want Dana to understand math and those who want her to learn it. For the first group, 
we can lump together their many programs and call them Newer Math (my term, others use the pejorative 
“Whole Math,” in reference to the equally disastrous “Whole Word” approach to reading, or “Feel Good 
Math,” from the constant praise heaped on flailing students).  Parents and some concerned teachers who 
form the bulk of the second group might call their various programs “Basic Math.” The pejorative for this 
is “rote learning.” Newer Math students are encouraged to discover their own algorithms and gain 
understanding through that process. We have seen that the standard algorithms are the end product of over 
5,000 years of human thought on numbers and how to manipulate them, so it’s not likely that Dana will 
duplicate this work in her first few years of grade school. Basic Math students are taught the standard 
algorithms, but there is indifference (duly noted and advertised by the Newer Math crowd) as to the amount 
of understanding acquired in the process.  Here is a summary of the two philosophies: 

  
Newer Math – teaches for  
understanding. 

Basic Math – teaches for   
performance. 

**pejorative: “feel good" math  **pejorative: "rote learning" math 
**algorithms self-taught **algorithms taught 
**algorithms expected to be  understood  **algorithms not expected to be understood 
**arithmetic operations de-emphasized **arithmetic operations emphasized 
**calculator use encouraged  **calculator use forbidden 
**student performance is hard to measure **student performance is easy to measure 
**teachers need special skills  **teachers need no special skills 
**students become comfortable with themselves **students become comfortable with numbers 
**curriculum is wide and shallow **curriculum is narrow and deep 
 
 



Since there is only so much time and energy available for the acquisition of math skills, common sense tells 
us that a compromise should be possible between the competing philosophies, but there is no common 
ground. From the viewpoint of those in the Newer Math group, teaching for understanding and teaching the 
formal algorithms are mutually exclusive. Teaching a specific algorithm forecloses the exploration process 
that is the basis of their philosophy. If someone tells Dana how to do it, how is she going to discover how 
to do it? Huh? 
 
Consider this. A system of dealing with numbers as sophisticated, though seemingly simple, as our own 
was developed only once throughout the entire course of human history. Why then, should we believe that 
the Newer Math crowd is capable of inducing Dana, a pre-adolescent years away from entering the formal 
operational level of psychological development, to “discover” this system. The answer is that we shouldn’t 
believe it. Dana is capable of learning the algorithms, and of understanding the mechanics involved, but she 
is not capable of discovering anything of mathematical value on her own. Perhaps someday, in her mature 
years, Dana will emerge as a giant and invent a better method of dealing with numbers. If that happens, 
people surely will remark how simple and straightforward her system is, how painfully obvious. 
 
What about the Basic Math crowd? They are not opposed, in principle, to children understanding math.  
But they feel that the present pursuit of understanding reduces the likelihood of their children doing well 
enough at math to get in and out of a good college and get a good job afterward. Math power may foster 
Dana’s self esteem, but comfort with numbers and expertise with the algorithms will enable her to take her 
math education as far as her talents will allow. She might even become a graduate student in the 
mathematics department of a major university. That will be the time to seek true understanding of 
mathematics, perhaps by investigating set theory or pattern analysis.  -  -   
 
The truth about “true” understanding 
 
There is a world of difference between true understanding of math (or even numbers) and reaching a level 
of competence where things seem to make sense. Bertrand Russell, a very gifted man who sought a true 
understanding of mathematics, became confused while pursuing the logical basis of 5 plus 3 equals 8. A 
group of prominent French mathematicians, the Bourbaki Group, produced a paper dealing with the 
fundamental characteristics of numbers.  The entry for “1” ran to over 200 pages. 
 
The plain truth is that Dana probably never will achieve a true understanding of even one segment of math. 
If she is lucky enough not to become the victim of a “feel good” math program or of math phobia, the math 
she is learning now and the math she has yet to learn will start to make sense in high school, after her brain 
has formed the hardwiring necessary to make the logical connections. Well before then, however, she can 
become expert in performing grade school arithmetic, and even some algebra. By “expert,” I mean that she 
should be able to perform rule-based calculations without consciously thinking of the rules. Using that 
definition, most of us are expert drivers. We jump in the car, drive to the store, and jump out without 
having given one thought to the rules of driving. Yet very few of us could be said to truly understand cars.  
Certainly, when we first learned to drive, no one gave us the keys to a car and told us to drive off and 
discover the truth about automotive transportation. We were thoroughly grounded in the rules of operating 
cars, and now we are expert at the operating system and hardly ever think about the rules we so nervously 
mastered. Our status as expert drivers gives us an independence and freedom without which we would be 
substantially handicapped in life. 
 
Continuing the automobile analogy, “Why do I have to learn to drive a car?” is a complaint none of us have 
ever heard a teenager make. The benefits of learning to drive are so obvious and so immediate that failure 
in that area is not an option. It is, in fact, unthinkable.  Whatever actions are necessary to obtain a driver’s 
license will be undertaken. Yet “Why do I have to learn math?” is a constant refrain.  The child complains 
because neither the benefits of success nor the consequences of failure are immediately apparent. But if 
Dana fails to become expert, first at arithmetic and then at the higher levels of math required for college 
work, her options in life will be substantially narrowed. Therefore, it is the parents’ job to keep in mind that 
failing to learn math is not an option for Dana. It is unthinkable.  -  -   
 
 



What’s a poor Parent to do? 
 
Many parents have discovered that the ruinous effects of the “whole word” reading system can be 
overcome by a comparatively brief period of tutoring, using any of the various phonics systems that are 
commercially available. Those parents who have taken advantage of the phonics programs have, in effect, 
wrested from the school the responsibility for their child’s progress in reading. In like manner, the harmful 
effects of “whole word” math programs can be overcome when parents assume responsibility for their 
child’s progress in basic arithmetic. 
 
Monitoring progress in math is more difficult than in reading. Parents can monitor a child’s progress in 
reading simply by asking her to read for them. Either she has trouble reading or she doesn’t. But they can’t 
monitor her progress in Newer Math because they have been cut out of the loop. They don’t know what the 
programs are supposed to do nor how to measure progress. 
 
Tutoring also is more difficult in math because the critical learning period is much longer. Everything in 
math is built upon, and requires mastery of, things that went before. Memorizing the addition facts requires 
knowledge of numbers. Executing the addition algorithm requires mastery of the addition facts. The 
multiplication algorithm requires mastery of multiplication facts, addition facts, and the addition algorithm. 
Building upon what went before continues through advanced calculus.  Mathematics is structured like an 
upside down pyramid, and basic arithmetic forms the small base.  If the base is weak, nothing of 
mathematical consequence can ever be built upon it. 
 
You must monitor your child’s progress in the fundamentals of basic grade school arithmetic.  If the school 
can’t or won’t teach basic arithmetic, then you must arrange for it to be done elsewhere.  You can do it 
yourself or pay an outsider to do it. Your child must become expert in addition, subtraction, multiplication 
and division because those areas, together with fractions, form the foundation of higher mathematics. A 
child who isn't comfortable with the addition facts will experience discomfort with every addition problem. 
This discomfort will increase as higher levels of arithmetic are built upon an increasingly unstable 
foundation. Your child is too young to have acquired math phobia or an attitude of “I can’t do math,” but 
that time may come if care isn’t taken. Start now. Trying to play catch-up by reviewing fundamentals with 
a recalcitrant sixth grader is nearly impossible. 
 
Your child is at an age where she will cooperate in acquiring math skills.  She will proudly display them. 
But her cooperation will vanish if she develops a distaste for math. She is not old enough to contemplate 
what contempt for math will mean to her future prospects.  Contemplating her future is your job. 
  
Summary 
 
1.  Inability to understand math is not a bar to achieving comfort with the mechanical operations and 
performing them expertly. 

2.  Arithmetic must be taught.  It cannot be discovered. 

3.  Most adults (and most teenagers) can teach basic arithmetic.  The operations are simple and 
mastery of them is easily measured.  Don’t complain about the school system to your child. Just do 
the job that must be done. 

4.  It is the expectation of success that fuels achievement in mathematics.  Schoolchildren can’t be 
fooled by a “feel good” environment. They know they are not really learning math. Accordingly, they 
learn to anticipate failure instead of success. Learning, really learning, numbers, facts, and 
operations will foster an expectation of success and help Dana to persevere and succeed on her own 
in algebra and beyond. You have it in your power to make this happen. 

 

 



Note from Internet Publisher: Donald L. Potter 
October 22, 2008 

A couple of years ago, I discovered Jerry Schnell’s revolutionary essay, “Why Your 
Child Can’t Understand Math.” Jerry sent me his computer program and information on 
his beliefs concerning how math should be taught. I was very interested because I had 
pretty well figured out how to teach reading with phonics and had come to the sad 
realization that students were struggling with a condition aptly called artificially induced 
whole-word dyslexia by Dr. Samuel Blumenfeld. I discovered how to diagnose and cure 
it. I was delighted to learn that Mr. Schnell had done similar work in the area of math.  

I use his program in my private tutoring and have found it highly effective.  

I am publishing his essay with his permission in the earnest hope that home school 
parents, tutors, teachers, administrators and curriculum developers will consider his 
crucial insights. 

 

December 24, 2009 

Late last year, Mr. Schnell stopped by my school to bring me some of his material. He 
spent the day at my school discussing the best way to teach math. He was also was very 
interested in learning about how I cured artificially induced whole-word dyslexia with 
phonics. We had a very delightful time. We kept in contact for a while after that, but I 
have unfortunately lost track of him.  

I regret that his excellent website is no longer on the Internet. I am glad I kept this file so 
that the information that was on his website can be preserved and made available to 
others. The information is extremely important and needs to be better known.  

I hope to publish more of Mr. Schnell’s math materials in the future. Mr. Schnell’s 
daughter contacted me shortly after I published this article to tell me that her father had 
passed away. Below is Mr. Schnell’s picture from 2000 on Linkedin. He was listed as the 
owner of Math Path BAC. He worked with Boys & Girls Clubs in the Los Angeles South 
Bay area.   

More information of arithmetic is available on the Math page of my website: 
www.donpotter.net  

Don Potter, Odessa, TX. Last updated on 12/24/2009, 11/24/2018 

                                                       	


